CDIM: Document Clustering by Discrimination Information Maximization

نویسندگان

  • Malik Tahir Hassan
  • Asim Karim
  • Jeong-Bae Kim
  • Moongu Jeon
چکیده

Ideally, document clustering methods should produce clusters that are semantically relevant and readily understandable as collections of documents belonging to particular contexts or topics. However, existing popular document clustering methods often ignore term-document corpus-based semantics while relying upon generic measures of similarity. In this paper, we present CDIM, an algorithmic framework for partitional clustering of documents that maximizes the sum of the discrimination information provided by documents. CDIM exploits the semantic that term discrimination information provides better understanding of contextual topics than term-to-term relatedness to yield clusters that are describable by their highly discriminating terms. We evaluate the proposed clustering algorithm using well-known discrimination/semantic measures including Relative Risk (RR), Measurement of Discrimination Information (MDI), Domain Relevance (DR), and Domain Consensus (DC) on twelve data sets to prove that CDIM produces high-quality clusters comparable to the best methods. We also illustrate the understandability and efficiency of CDIM, suggesting its suitability for practical document clustering. 2015 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering and Understanding Documents via Discrimination Information Maximization

Text document clustering is a popular task for understanding and summarizing large document collections. Besides the need for efficiency, document clustering methods should produce clusters that are readily understandable as collections of documents relating to particular contexts or topics. Existing clustering methods often ignore term-document semantics while relying upon geometric similarity...

متن کامل

On Supervised and Unsupervised Discrimination

Discrimination is a supervised problem in statistics and machine learning that begins with data from a finite number of groups. The goal is to partition the data-space into some number of regions, and assign a group to each region so that observations there are most likely to belong to the assigned group. The most popular tool for discrimination is called discriminant analysis. Unsupervised dis...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Web Document Clustering based on Document Structure

Document clustering techniques mostly rely on single term analysis of the document data set, such as the Vector Space Model. To achieve more accurate document clustering, document structure should be reflected in the underlying data model. This paper presents a framework for web document clustering based on two important concepts. The first one is the web document structure, which is currently ...

متن کامل

Constrained Coclustering for Textual Documents

In this paper, we present a constrained co-clustering approach for clustering textual documents. Our approach combines the benefits of information-theoretic co-clustering and constrained clustering. We use a two-sided hidden Markov random field (HMRF) to model both the document and word constraints. We also develop an alternating expectation maximization (EM) algorithm to optimize the constrain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 316  شماره 

صفحات  -

تاریخ انتشار 2015